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Turbulent boundary-layer flow and structure on a 
convex wall and its redevelopment on a flat wall 

By J. C. GILLIS 
S. Levy Inc., 1999 S. Bascom Avenue, Campbell, CA 95008 

AND J. P. J O H N S T O N  
Department of Mechanical Engineering, Stanford University, CA 94305 

Two experiments (&/R = 0.05 and 0.10) were performed to determine how boundary- 
layer turbulence is affected by strong convex curvature. The flow passed from a flat 
surface, over convex surface with 90' of turning, and then onto a flat recovery surface. 
The pressure gradient along the test surface was forced to be zero. 

After the sudden introduction of curvature, the shear stress in the outer part of 
the boundary layer is sharply diminished. The wall shear also drops off quickly 
downstream. When the surface suddenly becomes flat again, the wall-shear and the 
shear-stress profiles recover very slowly towards flat-wall conditions. The shear-stress 
profiles in the curved region for both experiments collapse when -%@/u," is plotted 
us. distance from the wall normalized on wall radius, n / R .  The strong-curvature data 
of So & Mellor also fall on the same curve. Thus suggests an asymptotic state for the 
shear-stress profiles of strongly curved boundary layers where R rather than 
boundary-layer thickness controls the active turbulence lengthscales. In this asym- 
ptotic region, the active shear-layer thickness is less than its initial value at the start 
of curvature. In the recovery region, the width of the active shear layer regrows slowly 
within the original velocity-gradient boundary layer, like a developing boundary 
layer under a free stream with a velocity gradient normal to the wall. 

1. Introduction 
Ever since Bradshaw's (1969) paper on the effects of streamline curvature on 

turbulence, everincreasing attention has been paid to the effects of extra strain rates. 
This paper presents results of two new experiments where flat-plate boundary layers 
were subjected to sustained convex longitudinal curvature and subsequently allowed 
to recover on a flat surface. 

The first investigations of the effects of curvature on turbulent shear flow were 
undertaken by Ludwig Prandtl soon after he laid the foundations of boundary-layer 
theory. His students, Wilcken, Wendt, Wattendorf and Schmidbauer carried out 
mean-velocity measurements in various curved duct flows. From these mean 
measurements, the magnitude of the turbulent shear stresses were deduced and the 
effective mixing lengths were calculated. These results showed a great reduction in 
the apparent lengthscale of the turbulence when the shear-layer flows over a convex 
wall. 

Prandtl recognized that this reduction in scale could be tied to a simple stability 
argument based on consideration of an inviscid flow, proposed by von Karman (1934). 
Von Karman's argument, as quoted by Bradshaw (1973), was that, in an inviscid 
irrotat,ional flow wich convex curvature, velocity decreases in the direction away from 
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the centre of curvature. If a fluid element travelling in a circular path in equilibrium 
is displaced a small distance away from the centre of curvature, a simple balance of 
forces on that element shows that the radial pressure gradient a t  its new location is 
slightly larger than what is necessary to move i t  in a circular path. The element is 
then forced back towards the centre of curvature. Conversely, if an element is 
displaced towards the centre of curvature, the pressure gradient a t  its new location 
is not strong enough to bend the element’s path around the tighter radius of curvature 
and i t  will move back out towards its original equilibrium position. I n  an inviscid, 
irrotationa.1 flow with convex curvature, then, there is a natural tendency for fluid 
elements to stay close to the particular streamline where their velocity is matched 
to the local radial pressure gradient. 

A similar conclusion was reached by Rayleigh (1917) about inviscid flows with 
circulation. In the case of simple circular flows where velocity is a function only of 
the radius of curvature R, the flow is unstable to small displacements when the 
derivative d r / d R  of circulation with respect to  R is less than zero. If dT/dR is greater 
than zero, the flow is stable - small displacements perpendicular to streamlines are 
damped out. The former condition corresponds to boundary-layer flow over a concave 
wall and the latter (stable) condition corresponds to flow over a convex wall. 

Even though inviscid arguments do not apply strictly to turbulent flow over a 
convex surface, the arguments do imply that the flight of a fluid element that is 
displaced normal to a stably curved mean streamline by a velocity fluctuation will 
be shorter than in a plane flow. The effect of this damping on the turbulence would 
be to confine the effect of any turbulent event closer to the originating radial position 
than in a flat-wall flow. One might then expect that the largest eddies in flow over 
convex surfaces would be smaller than for a corresponding flow over a flat surface. 
This argument cannot be made quantitative, because it comes from purely inviscid 
considerations. However, it  is supported by the data of Eskinazi & Yeh, which will 
be further discussed later. 

The first experiments on flow over convex surfaces were done by Prandtl and his 
students a t  Gottingen. Prandtl had apparently convinced himself from mixing-length 
arguments that  the stabilizing effect just described would have only negligible effect 
on convex boundary-layer turbulence. He decided that the effects of curvature, both 
concave and convex, could be predicted by including in his mixing-length model a 
curvature parameter as 

(In this paper, s will denote distance parallel to the wall, n will denote distance normal 
to the wall.) This was the first in the series of schemes which have been tried to 
model curvature effects accurately. However, the experimental results of Prandtl’s 
student Wilcken showed that the mixing length in a convexly curved boundary layer 
(back-calculated from the mean-velocity profiles) was much less than predicted by 
Prandtl’s theory and greatly reduced from its flat-wall value. Further work by other 
students confirmed these results (Wendt 1933 ; Wattendorf 1935 ; Schmidbauer 1936. 
The general conclusion - that, even for small values of 6/R, the boundary-layer 
hydrodynamics are greatly affected - was published, but this strange result did not 
inspire further published investigations. 

Note that the ratio of layer thickness 6 to wall radius of curvature R is the accepted 
parameter describing the magnitude of the curvature effects on the outer layer of the 
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flow. For 6/R 5 0.01, these effects are generally weak to moderate; but for 6/R 2 0.1 
they are overwhelming, and, as we shall see, this parameter ceases to have prac- 
tical meaning. 

In the mid-1950s experiments were conducted in a curved-channel flow by Eskinazi 
6 Yeh (1956). Using hot-wire anemometry, a fairly new technique a t  that time, they 
took the first measurements of turbulence quantities and drew important conclusions. 
Their experiments showed a great decline in values of (u'")i and (v'"); over the convex 
surface, and their spectral measurements showed that the decline was largest in the 
low-wavenumber (large-wavelength) range. The fact that the wavelength decline was 
largest in the low-wavenumber range supports the idea advanced earlier, that the 
damping effect of the radial pressure gradient reduces the size of the largest eddies. 
They related this drop qualitatively to the effects of curvature on the production term 
in the Reynolds stress transport equations. 

Interest in the effects of curvature intensified in the late 19609, possibly because, 
by this time, calculational models had been developed to the point where the effects 
of curvature were not lost in other inaccuracies. One of the first published experiments 
of this era was performed by Patel (1968) in a wind tunnel with a 90' bend. He 
measured only mean quantities, and these measurements may have been influenced 
by secondary flows on the tunnel's endwalls. Nevertheless, he was able to come to 
the correct conclusion that curvature affects entrainment by examining the variation 
of the shape factor, 6,/6,. 

A t  about the same time as Patel's work, Thomann (1967) published a set of ex- 
periments on heat transfer in curved boundary layers. They proved that the Stanton 
number is affected in much the same way as the skin friction, but no measure- 
ments of the hydrodynamic boundary layer were taken. Thomann's measurements 
were also noteworthy in that they were the first to be performed a t  supersonic 
free-stream Mach number. 

In 1972, So & Mellor published results from a very detailed experiment on a 
curved-wall boundary layer. In  this experiment the ratio of boundary-layer thick- 
ness to radius of curvature was large enough that several gross effects were 
demonstrated. All the Reynolds stresses were measured, and the flow was acceptably 
two-dimensional wall. On the convex wall it was found that the turbulent shear stress 
was 'turned off' (the value of was approximately zero) in the outer half of the 
boundary layer. 

Wall shear stress was inferred from a Clauser plot, but the turbulent shear stress 
profile was not measured close enough to the wall to check all values by extrapolation. 
The accuracy of the shear stress measurements very near the wall has been questioned 
lately by So (1978). 

Over the concave wall, they found evidence of a system of streamwise axial 
vortices, analogous to those found between rotating cylinders. These vortices were 
strong enough to make the mean flow inherently three-dimensional. Concave flows 
with their three-dimensional phenomena will not be further considered in this paper. 

In 1969, Bradshaw pointed out the analogy between the effects of curvature and 
the effects of buoyancy. He then proposed that the Monin-Oboukhov formula for 
the correlation of the apparent mixing length with small buoyancy effects 

(where /3 is a positive empirical constant and Ri is the Richardson number) could be 
5-2 
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used to model the effects of weak curvature if the ‘curvature Richardson number’ 
was defined as 

This approach met with considerable success. I n  fact, the value of the constant 
p could be inferred by analogy from meteorological experiments in stably and 
unstably stratified boundary layers, where i t  was found to be of the order of 10. This 
model was used by numerous workers, such as Johnston & Eide (1976), Rastogi & 
Whitelaw (1971) and Cebeci, Hirsh & Whitelaw (1978), each with slight modifications. 

I n  the 1970s the pace of work on curvature increased greatly. Bradshaw undertook 
a series of experiments on the effects of very weak curvature (6 /R z 0.01), working 
first with Meroney (1975) and later with Hoffmann (1978). Despite the fact that  the 
curvature was much less than for So & Mellor, there was a noticeable decline in the 
shear-stress levels in the outer region. The outer-layer mixing-length values declined 
slowly as the flow moved downstream of the start of convex curvature; eventually 
the values were about one-half of their corresponding flat-wall values. A similar 
experiment was performed by Ramaprian & Shivaprasad (1978). 

Simultaneously with the work described above, Castro & Bradshaw (1976) were 
characterizing a highly (convex) curved mixing layer. This was the first experiment 
to examine the recovery process, that  is, how the effects of curvature die away after 
a longitudinally curved shear-layer flow becomes straight again. I n  the early stages 
of recovery, their data showed an ‘overshoot ’ in value of the turbulent kinetic energy 
relative to its equilibrium plane-layer value. 

The first direct measurements of the recovery process in boundary layers were taken 
by Smits, Young & Bradshaw (1979) at Imperial College. Their flow was set up to 
show the effects of an ‘impulse of curvature’ in which a normal flat-plate boundary 
layer was subjected to  extremely strong curvature (6/R x 0.2) through a short turning 
angle (20’ or 30’). Their results showed the recovery to be a slow and non-monotonic 
process. No measurements were taken within the short bend. However, some of their 
results are similar to  the observations reported here. 

I n  recent years, models much more complicated than simple mixing-length models 
have been used to predict turbulent flows. Not surprisingly the models for cur- 
vature effects have also become more complicated. Multi-equation models based 
on the work of Launder, Reese & Rodi (1975) have been proposed by Irwin & Smith 
(1975), whose model modified the Launder, Reese & Rodi model by including the 
extra Reynolds stress production terms which appear naturally in those equations. 
The work of Gibson, Jones & Younis (1980) differed from that of Irwin & Smith in 
details of the pressure-strain modelling. Launder, Priddin & Sharma (1977) applied 
the empirical concepts of Bradshaw to the two-equation turbulence model of Jones 
& Launder (1972). 

Even though the number of data sets that  show the effects of convex curvature 
has grown in the last 10 years, our understanding of the physical processes is still 
relatively poor and the development of really good calculational models is being held 
back by a lack of reliable data. I n  9 2 of this paper, results of a new set of experiments 
will be presented, which will provide a little more information about how a 
boundary-layer flow responds to  convex curvature and how it  recovers from strong 
convex curvature. 

I n  the experiment to be described, careful measurements were taken to show the 
response of the boundary layer to  a sudden change from flat wall to  curvature, and 
later from curvature to flat wall. It was found, to  our surprise a t  first, that, although 
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FIQURE 2. Shear-stress profiles near the start of curvature: 0 ,  flat-wall upstream of curvature; A, 
exactly a t  the start of curvature; 0, after 13' of curvature; 0, after 30' of curvature. 

curvature effects were clearly apparent one or two boundary-layer thicknesses 
downstream of the start of curvature, the disappearance of those curvature effects 
on a flat wall was an extremely slow process. This asymmetrical behaviour is 
illustrated by figures 1 and 2, which show the skin-friction distribution over the whole 
test surface, and the shear-stress profiles close to the start of curvature. 

After some contemplation, it is clear that  this asymmetric behaviour, and other 
results of the experiments of $2 follow, or are consistent with, the argument 
previously stated, that the radial pressure gradient should act to reduce the size of 
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the largest eddies. This reduction is quite obvious in figure 2, in which the width of 
the region where the u' and u' fluctuations have significant correlation has been 
reduced from over 6 to under &3. 

Such a reduction in scale means that the large-scale eddies, which contain 
information from upstream - the ' history ' of the turbulence structure - must either 
shrink or disappear. If the reduction in scale is large enough and occurs fast enough, 
then the influence of upstream conditions on the turbulence structure will be less, 
and a local parameter, the radiusof curvature, will be very important in determining 
the turbulence structure. This is not to say that all influence of upstream conditions 
is lost - clearly the mean velocity field is a product of upstream conditions, but one 
will expect the turbulence structure of dissimilar boundary layers to become similar 
after the onset of strong curvature. 

The data of the experiments to be described support this argument. I n  figure 3 we 
have the heat-transfer data of Simon (1980), which show Stanton number as a 
function of streamwise distance, for three boundary layers, whose Reynolds numbers 
at the start of curvature vary by a factor of$ue. Downstream ofthe start of curvature, 
the Stanton numbers are extremely close. A similar result is shown in figure 4, where 
shear-stress measurements from four convex-wall experiments (So & Mellor 1972 ; 
Gillis & Johnston 1980; and two to  be described) are plotted together us. distance 
from the wall divided by radius of curvature. The profiles fall on top of each other, 
indicating the importance of the radius of curvature as a scaling parameter of the 
turbulence structure, at least when SIR > 0.05 and the effect is strong. 

Finally, the slow recovery from curvature effects, shown by the skin-friction and 
heat-transfer coefficients of figures 1 and 3, is also consistent with the idea that the 
stabilizing effect of convex curvature acts to reduce permanently the turbulence 
lengthscale and lessen the effects of the upstream conditions. A t  the end of curvature, 
the turbulence structure does not spring back to its original state as if i t  had been 
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FIGURE 4. Collapse of shear-stress profiles from several experiments, all taken after sustained 
curvature: 0, So & Mellor (1972); 0, Gillis & Johnston (1980); 0, present results, 6/R = 0.10; 
A, present results S/R = 0.05; 0, Hoffman & Bradshaw (1980), 6 / R  = 0.01. 

artificially held down in the curve. Instead, the turbulent eddy structure must slowly 
enlarge itself in the same way that the turbulence structure ofa  developing flat-plate 
boundary layer enlarges itself. Therefore the slow recovery might have been expected 
had we thought more carefully in the first instance. 

2. Experiments on convex curvature 
A series of experiments was undertaken to gather more data on the effects of convex 

curvature. The experiments were similar to the convex side of the So & Mellor 
experiment, but in this case they were designed to allow study of the onset of 
curvature and, particularly, how curvature effects disappear downstream of curvature. 
In the layout used, a two-dimensional turbulent boundary layer passes over a flat 
development surface onto a convex curved surface and then back onto a flat 
(recovery) surface. As in the previous experiment of Gillis & Johnston (1980), careful 
contouring of the concave side of the tunnel allowed us to control static pressure so 
that the pressure coefficient c =  P w a H  - P w a l l ,  8 - 0 

P 1 1 1 2  
1 u p W  

varied but never had an absolute value greater than 0.027. The experiments were 
also designed to allow data to be taken with different values of So (the boundary-layer 
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Heat exchanger 

FIGURE 5. Plan view of the experimental facility 

FIGURE 6. Measurement stations. 

thickness at the start of curvature), because it was originally thought that the ratio 
of So to the radius of curvature would be the parameter controlling the effects of 
curvature and the downstream behaviour of the boundary layer. As figure 4, based 
on several data sets, shows, however, S,/R has very little, if any, influence for values 
larger than 0.05. Two major data sets are presented here for values of 6,/R w 0.10, 
close to the resultsreported by Gillis & Johnston (1980) and for 6, /R x 0.05. The larger 
6,lR results are presented first (see figures 1 ,  2 and 7-15). 
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Experiments on convex surfaces which form one wall of a rectangular duct are 
always complicated by the secondary flows, which are driven down the sidewalls by 
the radial pressure gradient and which then flow out into the boundary layer on the 
test surface. This was particularly true in this experiment, in which two-dimensionality 
had to be maintained not only through the curved section but also in the long 
recovery section. It will be shown that we were successful in controlling these 
secondary flows. 

Figure 5 shows a layout of the wind tunnel and related equipment. Although similar 
in design to the original apparatus of Gillis & Johnston (1980), this test facility is 
completely new. The primary differences are improved secondary-flow control and 
a recovery section that is twice as long as that in the earlier rig. The blower is mounted 
at the end of the test section; i t  moves air through a return duct to a plenum. 
Downstream of the plenum, the flow passes through a heat exchanger, a flow 
straightener and six sets of screens. The flow is then accelerated through a 
two-dimensional nozzle with an 11 : 1 area ratio. Following the contraction, the 
potential core has a velocity profile flat within 0.15 percent of the mean and a 
streamwise turbulence intensity 

(u'")t/ up, 

about equal to  0.5 yo .t After being tripped just downstream of the nozzle exit, the 
boundary layer was allowed to develop over a flat preplate 205 cm long. The test 
surface then had a 90' bend of 45 cm radius, before flowing over the 205 ern long 
recovery plate. The t'est surface was 127 cm wide and, at the nozzle exit, the tunnel 
height (normal to test surface) was 50 cm. Figure 6 shows the stations where 
measurements were taken. 

Mean velocity measurements were taken from wall static pressure taps and Pitot 
tubes which were traversed across the boundary layer (n-direction). I n  the curved 
region, the static pressure P,, was read a t  the wall, and the local velocity was then 
calculated from 

2 

P 
u=-(pt-p, , ) - ( (p , -Ps,)  

where pt is local total pressure and P, is free-stream total pressure. The equation is 
derived and explained by Gillis et al. (1980). 

Mean-velocity measurements were also taken using a DISA 55M01 constant- 
temperature anemometer, a TSI 1076 linearizer and a DISA 55P01 horizontal-wire 
probe. Because of the limitations of hot wires, these mean-velocity measurements are 
less accurate than tlhe Pitot-probe data. However, they were useful to  check the Pitot 
data, and, at the station a t  the start of curvature (where the wall static-pressure 
distribution was unknown). they provided the only mean measurements. 

The horizontal-wire's bridge signal was used in conjunction with a TSI 1076 
linearizer and a DISA 55D35 true r.m.s. meter to measure turbulence intensities. 
Measurements of the Reynolds stress tensor were made using two DISA 55M01 
bridges, two TSI 1076 linearizers, and a DISA 55P51 X-wire probe. Details are given 
by Gillis et al. (1980). 

t In this experiment the velocity Up of the potential flow is not constant, but a function of local 
radius of curvature. The reference velocity U is the potential velocity at the wall, which is related 
to l T p  by Up = I / , , (R/ (R+n))  This definition differs slightly from the definition used by some 
workers of Up = UPweP/'. The difference for a flow where 6 / R  x 0.10 is a maximum of less than 
0.5%. 

? w 
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FIQURE 7 .  Mean-velocity profiles for four representative stations, SIR = 0.10 
(see figure 6 for station definitions). 

2.1. Mean-velocity pro$les 

Figure 7 shows four mean-velocity profiles taken at four representative stations one 
upstream of curvature ( 5 ) ,  one in the curve (9), and two in the recovery section (14 
and 17). The boundary-layer width used in figure 7 and throughout this paper is the 
99% thickness. The abscissa in figure 7 is the local velocity normalized on Up, the 
potential-flow velocity using the local radius of curvature. The upstream profile 
compares well with that expected for a fully turbulent boundary layer; the 
momentum-thickness Reynolds number U p w S z / v  is 3378 and the shape factor H is 
1.32. The profile (9) after 53' of bend, however, looks more like a transitional or even 
a laminar boundary layer. The velocity gradient is higher in the wake region, and, 
although it  is not readily apparent from figure 7 ,  the velocity gradient is lower near 
the wall. Originally, i t  was expected that in the recovery region the velocity profiles 
would relax back toward the upstream profile as the flow moved downstream in the 
recovery region. However, the velocity gradient in the outer part of the layer 
( n / S  > 0.4) continues to increase to the end of the recovery region, and the shape 
factors also remain high. At the last station (17) in the recovery region, there does 
seem to be some recovery taking place very close to the wall, below n/S = 0.05. 

The fact that  the values of U / U p  along a given streamline (or approximately at 
given n/S) is increasing as the flow moves downstream in the recovery region permits 
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certain inferences to be drawn about the shape of the shear-stress profile. As pointed 
out by Smits et al. (1979), the momentum equation along a streamline reduces to 

ap, a7 
as an’ 
-=-  

where pt is the stagnation pressure and T is the total shear stress. For the recovery 
region points, very near the wall, pt is increasing downstream. Since 7 drops to zero 
at  the edge of the boundary layer, one concludes that the gradient of 7 must be 
positive near the wall and that it must reach a maximum away from the wall, even 
when the streamwise static pressure gradient is zero, aP,/as = 0, as it is near the wall. 

Figure 8 shows the profiles plotted in inner coordinates. As has been noted before 
by So & Mellor (1972) and Ramaprian & Shivaprasad (1978), the profiles in the curved 
region follow the law of the wall, although they become non-logarithmic at a lower 
value of n+. There appears to be a second logarithmic zone from n+ x 200 to n+ x 1500, 
a fact not noted previously. 

The fact that the log law is valid over less of a region than for a flat wall may be 
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FIQURE 9. PL and PR for experiment at 6 / R  = 0.10: 0, PL (the integrated momentum 
deficit); A, PR (the integrated skin friction). 

due to  the fact that, for a curved wall, u is a function of three dimensionless groups: 

U nu, n n 

If R is small enough, then only nu,/v is important, and the classical log law holds. 
If R is large enough, then the mean velocity in the wake will be a function of n/S. 
However, if R is small, then the breakdown of the overlap region where the log law 
holds will be due to the dominance of the function of n / R ,  while n /6  is still small. 

The skin-friction coefficient $2, was computed by the Clauser-plot method ; results 
have already been shown plotted in figure 1.  As discussed earlier, the skin friction 
is still far below its flat-wall value at the end of the recovery section, a distance cf 
about 15 boundary-layer thicknesses from the end of curvature. The data of Smits 
et al. (1979) show that C, does begin to approach its flat-wall value, but only after 
about 50 boundary-layer thicknesses. 

From the mean-flow measurements, i t  was possible to  check the two-dimensionality 
of the flow by comparing, a t  each station, the measured momentum thickness P L  
to the momentum thickness calculated from the momentum integral equation and 
the measured skin friction PR. 

In  the curved region, the form of the momentum integral equation used was that 
devised by Simon & Honami (1980). The formulas they arrived at were 
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and K is the reciprocal of the wall radius of curvature. 
The results of these calculations are shown in figure 9. Comparison with similar 

plots of two-dimensional experiments in Kline et al. (1968) shows that the flow was 
a t  least as two-dimensional as in other accepted experiments. 

There is further evidence that the two-dimensionality of the flow was preserved. 
Figure 10 shows the spanwise distribution of momentum thickness measured in the 
recovery section, as well as the distribution upstream. It can be seen that the 
distribution is as flat in the recovery region as before the curvature. Previous 
experience (see Gillis et al. 1980) shows that even slight secondary flows cause the 
off-centreline values of 6, to increase much faster than the values in the centreline. 

Comparison of data between the present experiment and the earlier experiment of 
Gillis & Johnston (1980) shows that such secondary flows do not significantly affect 
any turbulence or skin-friction data, although entrainment and momentum thickness 
data can be affected, if secondary flows are much larger than in the experiments 
reported here. 

Because the flow in the recovery zone of this experiment was two-dimensional, the 
growth rate of boundary-layer mass flux could be used to estimate the entrainment 
rate. The rate of entrainment of free-stream fluid into a boundary layer is defined 
as the rate of growth of boundary-layer mass flux. For a flat, two-dimensional, 
incompressible boundary layer, the boundary layer mass flux per unit width is 

I(8) = ~ U ~ ( s - 6 , ) .  

Over a curved wall, the situation is slightly more complicated. The basic definition 
of entrainment is, of course, the same. As shown in Gillis et al. (1980), the equivalent 
expression for a curved-wall boundary layer is 

R + S  I($) = UpwpRln- 
R+S,’ 
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FIQURE 11. Growth of boundary-layer mass flux : 0, experiment; -, calculated for flat wall. 

where the displacement thickness is defined by 

It is clear from the plot (figure 11) that the entrainment rate is reduced by the 
curvature and remains low all the way through the recovery section. The solid line 
has the slope (entrainment rate) expected for a flat-plate boundary layer, and it fits 
the data upstream of the start of curvature. 

2.2 .  Turbulence data 
Figure 12 is an isometric plot of the shear-stress profiles at all 17 measuring stations 
in the case where 6,lR x 0.1. The first three profiles, a t  stations 3,4 and 6, were taken 
upstream of curvature and are essentially the same as the profile taken by Klebanoff 
(1955) in a similar flow. The dots at n/6 = 0 are the wall-shear values computed from 
the law of the wall. It can be seen that there is good agreement everywhere except 
at  station 7 .  The profile at  station 6 was taken exactly at  the start of curvature and 
is similar to the profiles upstream. The profile at station 7, however, taken after only 
1 3 O  of turning, shows the drastic effects of curvature. In a distance of only 2.8 
boundary-layer thicknesses, the shear stress in the outer 70 % of the boundary layer 
has disappeared entirely. Profiles 7-10 in the curved region all have similar shapes, 
with a nearly linearly descending dropoff away from the wall. In the recovery region, 
the profile shape near the wall shows the positive slope deduced from the mean-velocity 
profiles as it slowly changes back to a zero slope with 7+ equal to unity. The overshoot 
of -m and wide region of high shear stress out to n/6 x 0.3 for the profiles in the 
recovery region clearly shows the slowness of recovery. 

Figure 2,  in which the four profiles immediately upstream and downstream of the 
start of curvature have been plotted, shows how rapidly the effects of curvature 
appear. The profile at  station 7 shows that the turbulent shear stress is negative (a 
result larger in magnitude than the uncertainty in the data in this region) over 
approximately the outer 60 yo of the layer. The profile at  station 8 shows a large region 
of negative shear stress. At station 9, the region of negative shear stress has become 
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FIGURE 12. Isometric plot of shear-stress profiles as distance in flow direction: 0 ,  
friction calculated by Clauser plot. 

wall skin 

smaller, and none of the profiles downstream shows any negative shear stress. There 
is no physical reason why the correlation of u’ and v’ should always be negative 
(producing a positive shear stress) when the velocity gradient is positive. The profile 
at  station 9 shows that the magnitude of the negative shear stress has declined, and 
at station 10 in figure 12 there are no more regions of negative shear stress. 

The reason for the appearance of negative shear stress in the curved boundary layer 
was given in a separate analysis of the present data by S. Honami (1980 private 
communication). For a flow over a curved surface, the Reynolds-stress transport 
equation can be written 

- e. 

The terms on the right-hand side have been grouped according to function. On the 
first line are the production terms. The second line is the pressurestrain term, which 
tends to change the orientation of the turbulent motions. On the third line are the 
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FIQURE 13. Collapse of inner-layer shear-stress profiles in curved region: 
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diffusion terms, and the last line is the dissipation term. Over a curved wall the 
dominant production terms are 

-au - - u  
an R 

p = u'2 - - (2u'2 - 21'2) - . 

For a flat wall, of course, only the first of the terms on the right-hand side is non-zero. 
The second term in the equation above appears suddenly a t  the start of curvature, 
and it tends to decrease the total production rate, since usually 2 2  is greater 
than p. 

and 2112 from stations 5 and 7 show 
that, for a flat-wall profile like station 6, the production is positive at all values of 
n. For the curved-wall boundary layer, the total production is positive in the inner 
layer, but in the outer layers, the positive and negative production terms are about 
equal. This is the reason for the huge change in the outer-layer levels of -= near 
the start of curvature. The negative production balances the positive production, and 
the dissipation reduces the shear-stress level to low values. 

Figure 13 is a plot of the shear-stress profiles taken in the curved region. The sharp 
linear dropoff near the wall is clear. It is also clear that, in contrast with the rapid 
change at the start of curvature, the profiles do not change substantially as the flow 
moves downstream. Near the wall, the shear-stress profiles nearly collapse on each 
other when ;"/u: is plotted us. R/6. This collapse is due only to the fact that 6 does 
not change very much in the curved region. As figure 4 shows, the appropriate scaling 
length appears to be R rather than 6. The profiles seem to be in a nearly asymptotic 
state, a t  least for n/S < 0.4. 

Figure 14 is a plot of a,  the ratio of shear stress to turbulent kinetic energy a t  three 

Calculations made with measured values of 
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typical stations. Upstream of curvature, a is nearly constant over almost all of the 
boundary layer and is about equal to  0.145, a value in good agreement with the 
previous flat-plate measurements of Klebanoff (1955). For the curved boundary layer, 
however, a becomes a strong function of position across the layer. Values of a beyond 
n / 6  = 0.4 are not very reliable, because of the uncertainty in -a and q2 ,  both of 
which ~ have low magnitudes. Many calculation methods employ the assumption that 
-u'v'/q2 is a constant, so i t  is clear that  some modification will be necessary if these 
models are ever to handle curvature. I n  the recovery region, a very surprising trend 
is noticed. The recovery of the structural coefficient is very quick (compared with 
the sluggish recovery of the -m and z2 profiles). 

In  this experiment, separate measurements were taken of all the components of 
the two-dimensional Reynolds stress tehor .  Comparison of the data showed that, for 
profiles taken in the curved region, the turbulence beyond n / 6  2 0.35 (where the shear 
stress was small) the measured values of the normal stresses were very close, and the 
turbulence was nearly isotropic. To show this, consider the scalar b2 = bij bij ofa tensor 
which measures the anisotropy of turbulence. This anisotropy tensor, often used in 
-turbulence models, is 

where Ry is the Reynolds stress tensor. Figure 15 shows how the value of b2 is affected 
by curvat,ure a t  several stations in the boundary layer. Because of the growth of the 
boundary layer is small in the curved region, plotting b2 along constant values of n / 6  
is almost the same as plotting b2 along mean streamlines. At y / S  = 0.55, the nearly 
isotropic nature of the outer-layer turbulence in the curve is clear ; but the near wall, 
at y / 6  = 0.10, this is not true, but anisotropy seems to increase with distance in the 
curved region. Note, finally, that  anisotropy recovers rapidly downstream of the 
curved region. 
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Probe 

FIGURE 16. Two-layer conceptualization of the outer part of a curved boundary layer. 

The shape of the turbulence profiles, the unusual behaviour of the structural 
coefficient, and the near-isotropy of the outer layer in the curved region suggest a 
possible physical interpretation for the data presented so far. As argued in § 1, the 
main effect of the curvature is to reduce the scale of the turbulence. In the shear-stress 
profiles, the width of the active shear-stress layer has been drastically reduced to 46. 
The velocity gradient boundary layer, however, extends to 6. Thus, there is a two-layer 
structure in the outer layers of the curved and recovery region. Very near the wall 
there is normal turbulence with the usual value of structural coefficient. In the outer 
layer there is decaying, nearly isotropic ‘debris ’ from the thick, turbulent boundary 
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FIQURE 17. Skin friction (from mean-velocity profiles) m. distance in the flow direction: A, 
data; -, predicted friction for the same initial boundary layer on a flat wall. 

layer upstream of curvature. This ‘debris’ is cut off from the direct Reynolds- 
stress-generating mechanisms of the wall and decays as i t  is convected downstream. 

The idea that the ‘turbulent shear layer ’ is concentrated in a narrower zone within 
the ‘ velocity-gradient layer ’ could also provide an explanation for the shape of the 
- a / q 2  profiles, if the ‘turbulent shear layer ’ has its own intermittency , as sketched 
in figure 16. Assuming that the ratio of - m/q2 in the ‘ turbulent shear layer ’ is about 
0.145, as usual (and as it is near the wall), then a probe which time-averages -m/q2 
at a point where instantaneous - m/q2 is fluctuating alternately between 0.145 (wall 
layer) and 0.0 (outer, decaying layer) could easily produce a profile like that at station 
5 in figure 14. 

Another experiment was run on the long-recovery rig. One of the upstream trips 
was removed and the remaining trip readjusted in order to  give a ratio of boundary- 
layer thickness to radius of curvature of 0.05. This procedure enabled us to observe 
the effects of curvature at an intermediate value of S,/R. It was also supposed when 
we set up this experiment that the recovery process would be more complete, since 
the number of (velocity-gradient) boundary-layer thicknesses downstream of 
curvature was greater. 

The skin-friction distribution for this case is plotted in figure 17, along with the 
flat-wall prediction. Despite the fact that the original boundary layer is only about 
one-half as thick as for the previous cases, the gf curve is remarkably similar. The 
recovery after curvature appears to be no more advanced at the end of the recovery 
plate than in the experiment a t  S,/R z 0.10. 

One of the consequences of thinning the test surface layer was to increase problems 
with secondary flows generated on the endwalls. Since the boundary layers on the 
sidewalls were unaffected by the change from thick to thin test-surface boundary 
layer, the amount of secondary flow field coming off the side walls was the same as 
for the other experiment, where S,/R = 0.10. The test-surface boundary-layer mass 
flux, however, was much less, and consequently the effects of the secondary flow are 
greater. Figure 18 shows PL and PR calculations for this experiment. The 
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secondary flows are clearly enough to  influence the growth rate of integral para- 
meters. Experience with the first experiment and that of Gillis & Johnston (1980) 
indicates that  measurements of gC, and the turbulence quantities should not be 
greatly affected by secondary flows of this magnitude. However, i t  is probable that the 
secondary flows are responsible for the very small decrease in &C, in the recovery 
region of the 6/R x 0.05 experiment. Without the secondary flows, there would 
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experiment at 6,lR = 0.05. 

probably be some tendency for recovery of +Cf in the So/R x 0.05 experiment, as 
there is in the So/R = 0.10 experiment. 

Only six shear-stress profiles were taken in the last experiment. Measurements were 
made upstream; two profiles were located in the curved region and three were over 
the recovery plate. Figure 19 shows all these profiles. 

The trends observed previously are reconfirmed here, except for a couple of 
peculiarities. First, in the profile taken near the end of curvature (station 9), the region 
over which there is appreciable shear stress extends over a greater fraction of 6 than 
in the S/R = 0.10 cases. Secondly, in the last profile a t  station 17,  the level of - m/u,2 
beyond its maximum is much higher over the entire profile than for the measurements 
taken upstream. At n / 6  x 0.50, the value of -m/u,2 a t  station 17 is twice that a t  
station 5. 

As in the 6/R x 0.10 experiments, the structural coefficient a became a function of 
position n/S over the curved surface, as shown in figure 20. For this case, the steepness 
of the dropoff at large n/S is much less than was the case a t  S/R = 0.10. 

The data from both experiments, at S/R = 0.10 and at SIR = 0.05, show a striking 
degree of similarity downstream of the start of curvature. It is suggested that, as the 
width of the active shear layer is decreased, the large eddies which carry the ‘history ’ 
of the turbulence structure are either destroyed or modified in such a way that the 
‘history’ is lost. Downstream of the start of curvature, the initial conditions are 
largely irrelevant. Note that, in both flows we have examined, the initial boundary- 
layer thickness was larger than the thickness of the shear-stress-carrying region. The 
present suggestion may not be valid for layers that are very thin a t  the start of 
curvature, e.g. the flow of Meroney & Bradshaw (1975) and Hoffman & Bradshaw 
(1980). 

Support for this interpretation comes mostly from the shear-stress profiles and most 
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especially from figure 4, which shows the end-of-curvature profiles from the present 
two experiments together with profiles from an earlier, similar experiment and profile 
from So & Mellor in which the free-stream velocity and radius of curvature were 
somewhat different (R  = 32.56 em, U p ,  = 2404 cm/s) from our cases. The data are 
normalized on R rather than 6, and they follow the same curve, showing that the 
shear-stress profile is a function of n/R rather than n/S. It is, at most, only a weak 
function of Up,. This is surprising, since the cross boundary-layer pressure gradient 
V / R  is a strong function of Up,. The weak-curvature data of Hoffman & Bradshaw 
(1980) do not follow the other data, however. Smits et al. (1979) did not measure 
shear-stress profiles over their curved wall, so it was impossible to check for the 
collapse of their data as well. However, the first profile they measured in the recovery 
section shows that the shear stress is confined to the region n/R < 0.043, indicating 
that the shear-stress profiles in the curved section may have been quite close to the 
curve of figure 4. 

In  figure 21, the skin-friction curves for experiments 1 and 2 have been overlaid. 
It can be seen that the curvature exerts an ‘organizing influence’ - the values of skin 
friction after the start of curvature are much closer than they were over the preplate. 
Measurements of Stanton number for the same two experiments, taken by Simon and 
Moffat (figure 3) show the similarity of conditions after curvature even more clearly. 

The main effect of strong curvature, then, is to impose a limit on the size of the 
largest eddies. If the initial large-eddy size is larger than this limit, eddies larger than 
the limit must either shrink or be destroyed. In  the recovery region, the large-scale 
eddies grow back slowly, just as large eddies grow slowly in a developing boundary 
layer. 

Apparently our experiments at 6,/R = 0.05 and 6,/R = 0.10 simply approach the 
same ‘asymptotic convex boundary layer ‘from twoslightly different initial conditions. 
Whether an initially thin layer such as that of Hoffman & Bradshaw (S /R z 0.01) 
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approaches this limit from below is an open question. If our results do indeed show 
an asymptotic state, the results of Hoffman & Bradshaw, as plotted on figure 4, must 
be well below that asymptotic state. 

3. Implications of the present results for the calculation of curved 
boundary layers by mixing-length models 

The most important characteristic of the experimental results just presented is that 
the response of the boundary layer to the introduction of convex curvature is 
markedly different from its response to  the disappearance of curvature. Not only is 
this clear from the plots of skin friction (figure 1 and 17), but also from the shear-stress 
profiles (figures 1 1  and 19) and from the entrainment (figure 10). This asymmetry 
of response is consistent with the explanation that, when the curvature is strong 
(6,/R > 0.04), the large-scale eddies are forced to a new scaling length - the radius 
of curvature. 

For the strong-curvature cases presented, the effect of the extra scaling length is 
a decrease in the size of the largest eddies. This process can presumably occur either 
by the ‘shrinking’ of eddies too large to be compatible with the new scaling length 
or ‘by the complete dispersal of those eddies. When this action takes place, the 
‘history ’ of the boundary layer is lost. 

When the extra scaling length disappears at the end of curvature, the boundary-layer 
turbulence does not spring back to its original structure, because the memory of the 
upstream turbulence structure has been lost. Some information about the upstream 
history of the layer is present in the mean-velocity profile, but the velocity gradient 
is only indirectly coupled to the turbulence structure. Thus there is no strong driving 
force for recovery, but only a gentle tendency of the large scales to reappear over 
a long distance. 

The turbulent layers nearest the wall do not appear to be directly affected by 
curvature. This is best shown in the mixing-length profiles computed from the 
mean-velocity and shear-stress profiles from $2. As shown in figure 22-25, the mixing 
lengths near the wall still follow the formula 1 = kn.7 Away from the wall, however, 
the mixing length becomes a constant a t  a much lower value of n. This result makes 
sense, since, very near the wall, the wall will look flat to  the small-scale turbulence. 
Another indication that curvature has its effect mainly on the large-scale eddies is 
the big (and immediate) change in the entrainment rate at the start of curvature. 

Taken with other indications that the curvature effects are strongest in the wake 
region of the mean profile, it is obvious that simple turbulence models like the Prandtl 
mixing length will have trouble, because they are based on local conditions. The 
curvature effects act on the large scales, which are not immediately controlled by local 
conditions. In  his mixing-length model, Bradshaw accounted for the upstream 
influence with a first-order lag equation to calculate an ‘effective ’ radius of curvature. 
The lag equation he suggested, 

predicts a symmetric response - meaning that curvature effects should appear and 
disappear at the same rate. One possibility for modifying the above equation is to 

t Later work by Adams & Johnston (1981) suggests a better fit l / l o  = 1/(1 +FRi), where I,, = kn 
andRi x 21~/(R~U/~n).Verynearthewall,Riissmallbecause~u/~nisverylarge.Thus1/(1 +bRi) x 1. 
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make the recovery-rate parameter (1/106) a function of the amount of shear stress 
in the boundary layer. Experiments by the authors with such a model did indeed show 
improved fit to the data, but it could not easily be made to account for the great 
difference in the rate of appearance and disappearance of curvature effects. 

The situation for mixing-length models is not all bad. The data show a relationship 
between the shear stress and the mean-velocity gradient which is consistent with the 
mixing-length model. During the curve, the mean-velocity gradient in the outer layer 
increases, because the shear stress is decreased. In  the recovery region, this much- 
increased niean-velocity gradient can combine with an increasing mixing length to 
produce a maximum in the shear-stress profile away from the wall, as seen in the data. 
Also, the same combination of large outer-layer velocity gradients and an increasing 
mixing length will result in the overshoot of shear stress which is seen in the data 
near the end of the recovery section. 

The fact that  there is similarity in the shear-stress profiles and mixing lengths for 
both experiments, despite the factor-of-two difference in boundary-layer widths, 
implies that  for asymptotic curvature the outer-layer mixing length is a function of 
the radius of curvature alone in the curved region. When inventing a mixing-length 
curvature rnodel, the question arises - what is the proper scaling length a t  the end 
of the curvature '1 It is clear that  simply switching back to scaling the mixing length 
based on the 99 "/b velocity thickness will cause an almost immediate recovery. The 
lag equation approach is one way to simulate the slow recovery. However, all evidence 
in the curved region is that  the turbulence structure has been disassociated from the 
upstream history of the boundary layer. Thus the appearance of 6 in the lag 
equation seems inappropriate. For this reason, it seems more likely that there is some 
more appropriate scaling length within the boundary layer. 

For boundary layers on flat surfaces in moderate pressure gradients, the method 
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of scaling the mixing length on S has been successful. I n  the last section, i t  was 
argued that, when the turbulence structure adjusts to  the radius of curvature as the 
dominant scaling length, i t  is compressed within the velocity gradient layer. One way 
to  reflect this concept with a turbulence model would be to  make the width of the 
active shear layer the scale for the mixing lengths in the outer region. This idea is 
illustrated in figure 26(a, b ) .  The shear-layer width for a flat-plate boundary layer 
is approximately the same as the width of the velocity-gradient layer, but for a curved 
or recovering boundary layer they differ greatly. 
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A model based on this idea, in which the outer-layer mixing length is scaled on 
the shear-layer thickness and the near-wall mixing length is untouched or only 
changed slightly, could account for the slow recovery in a natural way without a lag 
equation. It also fits in with the physical observations of §2. 

To test this idea, we have made the following non-rigorous calculations. First, the 
shear-layer width S,, was somewhat arbitrarily defined by extrapolating (by means 
of a straight-line fit by the method of least squares) the linear descending portion 
of the shear-stress curves, as shown in figure 27. 

Next, we computed the average outer-layer mixing length. The outer layer was 
defined as the region outside the. point where the mixing length differed significantly 
from k n  but within Ssl. 

The results are shown in table 1 .  Naturally, these results can be informative only in 
a qualitative sense because of the arbitrary nature of the definitions above and the 
scatter of the data on which they are based. Nevertheless, they show that S,, could 
be a good scaling length, since the ratio of mixing length to S,, is approximately 
constant a t  0.07 everywhere except a t  the start of curvature. One such model is 
discussed in Gillis et al. (1980). A simplified, practical version of this model was 
developed recently by Adams & Johnston (1981) which uses the wall radius R directly 
to scale 1 in the curved region, and a different lag model for recovery. 

4. Conclusions 
The principal conclusions of this work are as follows. 
(i) The main effect of the introduction of surface curvature is a significant and 

immediate reduction in the turbulence lengthscale (as measured by the mixing 
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length). Once this lengthscale is reduced, it regenerates very slowly, even if the 
boundary layer is flowing over a flat surface downstream of a region of significant 
curvature. 

The reduction of eddy lengthscale caused by the curvature, through the action of 
the normal pressure gradient p V / R  is accompanied by a collapse of the active 
shear-stress layer to a thickness less than the thickness 6 of the velocity-gradient 
boundary layer. The width of the velocity-gradient boundary layer is mainly 
determined by flow upstream of curvature; the width of the active shear layer is 
chiefly determined by local conditions in the curved region. Once the shear-stress layer 
has collapsed, it can regrow only at the rate characteristic of a thinner developing 
boundary layer. This rate is slow enough to account for the slow redevelopment of 
the shear-stress layer, after curvature, on the flat recovery surface. 

After 'compression' of the shear-stress layer, the turbulence at large values of n/6, 
beyond the shear-stress layer but within the velocity-gradient layer, is effectively 
isolated from the wall layers. It has little production, and consequently dissipation 
causes decay of the turbulent energy in the outer layers. 

(ii) Shear-stress profiles taken in the curved regions for our two different sets of 
initial conditions (S,/R = 0.05 and 6,/R = 0.10) and the data of So & Mellor (with 
different radius of curvature and free-stream velocity) collapse when m/u," is plotted 
against n/R.  This behaviour indicates that, after the compression of the turbulent 
shear-stress layer, the large-scale eddies which carry the upstream history of the 
boundary layer are destroyed and the initial conditions no longer matter. The collapse 
of profile indicates that there may be an asymptotic shear-stress profile, a t  least for 
zero-pressure-gradient flow over convex surfaces with initial values of 6/R greater 
than &. 

(iii) In the curved region, the law of the wall fits the data with the same constants 
used on the flat wall. The log region does not extend as far out in the boundary layer, 
ending near y+ = 100. In addition, near the wall, the mixing length still scales a 
distance from the wall, as it does for no curvature. These observations indicate that 
the near-wall layers are not as strongly affected by the curvature as is the wake region. 

(iv) It was found that, for this experiment, the outer-layer mixing length scaled 
on the width of the shear-stress layer rather than on the velocity-gradient-layer 
thickness 6. 
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